Structural evolution of p53, p63, and p73: implication for heterotetramer formation.

نویسندگان

  • Andreas C Joerger
  • Sridharan Rajagopalan
  • Eviatar Natan
  • Dmitry B Veprintsev
  • Carol V Robinson
  • Alan R Fersht
چکیده

Oligomerization of members of the p53 family of transcription factors (p53, p63, and p73) is essential for their distinct functions in cell-cycle control and development. To elucidate the molecular basis for tetramer formation of the various family members, we solved the crystal structure of the human p73 tetramerization domain (residues 351-399). Similarly to the canonical p53 tetramer, p73 forms a tetramer with D(2) symmetry that can be described as a dimer of dimers. The most striking difference between the p53 and p73 tetramerization domain is the presence of an additional C-terminal helix in p73. This helix, which is conserved in p63, is essential for stabilizing the overall architecture of the tetramer, as evidenced by the different oligomeric structures observed for a shortened variant lacking this helix. The helices act as clamps, wrapping around the neighboring dimer and holding it in place. In addition, we show by mass spectrometry that the tetramerization domains of p63 and p73, but not p53, fully exchange, with different mixed tetramers present at equilibrium, albeit at a relatively slow rate. Taken together, these data provide intriguing insights into the divergent evolution of the oligomerization domain within the p53 family, from the ancestral p63/p73-like protein toward smaller, less promiscuous monomeric building blocks in human p53, allowing functional separation of the p53 pathway from that of its family members.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tracing the Evolution of the p53 Tetramerization Domain

The tetrameric transcription factors p53, p63, and p73 evolved from a common ancestor and play key roles in tumor suppression and development. Surprisingly, p63 and p73 require a second helix in their tetramerization domain for the formation of stable tetramers that is absent in human p53, raising questions about the evolutionary processes leading to diversification. Here we determined the crys...

متن کامل

The origins and evolution of the p53 family of genes.

A common ancestor to the three p53 family members of human genes p53, p63, and p73 is first detected in the evolution of modern-day sea anemones, in which both structurally and functionally it acts to protect the germ line from genomic instabilities in response to stresses. This p63/p73 common ancestor gene is found in almost all invertebrates and first duplicates to produce a p53 gene and a p6...

متن کامل

Subject Review p63 and p73: Roles in Development and Tumor Formation

The tumor suppressor p53 is critically important in the cellular damage response and is the founding member of a family of proteins. All three genes regulate cell cycle and apoptosis after DNA damage. However, despite a remarkable structural and partly functional similarity among p53, p63, and p73, mouse knockout studies revealed an unexpected functional diversity among them. p63 and p73 knocko...

متن کامل

p63 and p73: roles in development and tumor formation.

The tumor suppressor p53 is critically important in the cellular damage response and is the founding member of a family of proteins. All three genes regulate cell cycle and apoptosis after DNA damage. However, despite a remarkable structural and partly functional similarity among p53, p63, and p73, mouse knockout studies revealed an unexpected functional diversity among them. p63 and p73 knocko...

متن کامل

p63 and p73 Transcriptionally Regulate Genes Involved in DNA Repair

The p53 family activates many of the same genes in response to DNA damage. Because p63 and p73 have structural differences from p53 and play distinct biological functions in development and metastasis, it is likely that they activate a unique transcriptional network. Therefore, we performed a genome-wide analysis using cells lacking the p53 family members after treatment with DNA damage. We ide...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 106 42  شماره 

صفحات  -

تاریخ انتشار 2009